Nearest-Neighbor Forecasts Of U.S. Interest Rates
نویسندگان
چکیده
We employ a nonlinear, nonparametric method to model the stochastic behavior of changes in several short and long term U.S. interest rates. We apply a nonlinear autoregression to the series using the locally weighted regression (LWR) estimation method, a nearest-neighbor method, and evaluate the forecasting performance with a measure of root mean square error (RMSE). We compare the forecasting performance of the nonparametric fit to the performance of two benchmark linear models: an autoregressive model and a random-walkwith-drift model. The nonparametric model exhibits greater out-of-sample forecast accuracy that that of the linear predictors for most U.S. interest rate series. The improvements in forecast accuracy are statistically significant and robust. This evidence establishes the presence of significant nonlinear mean predictability in U.S. interest rates, as well as the usefulness of the LWR method as as modeling strategy for these benchmark series. 1 Corresponding author: Tel.: (865) 974-1699, Fax: (865) 974-4601, email: [email protected].
منابع مشابه
Ensembles of Nearest Neighbor Forecasts
Nearest neighbor forecasting models are attractive with their simplicity and the ability to predict complex nonlinear behavior. They rely on the assumption that observations similar to the target one are also likely to have similar outcomes. A common practice in nearest neighbor model selection is to compute the globally optimal number of neighbors on a validation set, which is later applied fo...
متن کاملSuperior Forecasts of the U
We use a nonlinear, nonparametric method to forecast unemployment rates. This nonlinear method is an extension of the nearest neighbor method but uses a higher-dimensional simplex approach. We compare these forecasts to several linear and nonlinear parametric methods based on the work of Montgomery et al. (1998) and Carruth et al. (1998). Our main result is that, due to the nonlinearity in the ...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملEFFECT OF THE NEXT-NEAREST NEIGHBOR INTERACTION ON THE ORDER-DISORDER PHASE TRANSITION
In this work, one and two-dimensional lattices are studied theoretically by a statistical mechanical approach. The nearest and next-nearest neighbor interactions are both taken into account, and the approximate thermodynamic properties of the lattices are calculated. The results of our calculations show that: (1) even though the next-nearest neighbor interaction may have an insignificant ef...
متن کامل